Cluster Analysis

Main sources:

Aldenderfer, M.S. and Blashfield, R.K. 1984. Cluster Analysis. Beverly Hills, CA: Sage Press

Everitt, B. S. 1980. Cluster Analysis. Second Edition, Heinemann Educational Books. London.

Gries, S. Th. 2007. *Cluster Analysis: A practical introduction with R*. [materials from workshop at the University of Sheffield, 21 May 2007]

Kaufmann, L. and Rousseeuw, P.J. 1990. Finding Groups in Data,

New York: John Wiley & Sons, Inc.

What is cluster analysis (CA)?

- CA is a generic name for wide variety of procedures
- Def.: A clustering method is...
 - a multivariate statistical procedure
 - that starts with a data set containing information about a sample of entities and
 - attempts to reorganize these entities into relatively homogeneous groups

cluster analytical approaches

hierarchical approaches partitioning approaches

agglomerative

- start off with any many clusters as there are objects in data set
- merge succesively into larger clusters

divisive

- start off with one cluster
- -split up successively

k-means / k-medoids

Why clustering?

- Classification is a fundamental process in the practice of science
- Classification (categorization) is a basic human conceptual ability

How is CA used?

- Development of a typology
- Investigation of useful conceptual schemes for grouping entities
- Hypothesis generation through data exploration
- Hypothesis testing, or the attempt to determine if types defined through other procedures are in fact present in the data

Where has it been applied

- Information retrieval
 - Clustering documents so that users' queries can be matched against cluster centroids
- Text categorization and segmentation
 - Lexical macrostructure of ...
 - Texts
 - Dialects
 - Genres
- Theoretical linguistics
 - Identifying semantically similar words on the based of syntactic and/or semantic distribution
 - Word sense disambiguation
 - Evaluating experimental results
- Linguistic typologies
 - Group languages into groups/families

What does it do exactly? Conceptual issues: similarity

- Grouping object by (dis-)similarity
 - Maximize intra-cluster similarity
 - Maximize inter-cluster similarity
- But what exactly does it mean for two objects to be similar?

What does it do exactly? Conceptual issues: similarity

- Quantitative estimation dominated by concept of *metrics*
 - Cases are points in a coordinate space such that observerd similarities of the points correspond to metric distances between them
- Therefore, similarity is symmetric
 - $d(x,y) = d(y,x) \ge 0$
- *Philosophically* speaking, this is just one of many conceivable positions
- Psychologically speaking, this is controversial
 - Cf. Tversky 1977

Objects in metric space

a < -c(2,6)

 $b \le -c(1,2)$

 $c \le -c(1,1)$

 $d \le -c(3,2)$

 $e \le -c(3,1)$

 $f \le -c(4,1.5)$

b

Distance matrix

	а	b	С	d	е	f
а	0	184	222	177	216	231
b	184	0	45	123	128	200
С	222	45	0	129	121	203

Distance -> Euclidean distance

= square root of the sum of squared distances of a pair of objects

In R: $sqrt(sum((a-b)^2))$

Distance matrix (heat map)

...let's pause a second

A few precautionary generalizations...

A few precautionary generalizations...

- Most CA methods are relatively simple procedures that in most cases, are not supported by an extensive body of statistical reasoning
 - Cf. Aldenderfer & Bleshfield 1984, Jardon and Sibson 1971
- Different methods can and do generate different solutions
- Strategy of cluster analysis is *structure-seeking* although its operation is *structure-imposing*

...and a moral

- 1. Do not fall in love with a given clustering solution
- 2. Do not (blindly) trust studies that use some clustering method, but don't tell you why exactly that one was chosen
 - 1. if they do not spend much time on the justification of their choices of algorithms, chances are they are fishing in the dark
- 3. Do not commit the **buzzword fallacy**:
 - data-driven, buttom up methods do not necessarily constitute good science
 - ...in fact the can be rather stupid unwise (naive empiricism)

Issues in clustering

Problem 1: Choice of variables

- Most critical step in research process...
- Theory guides choice of variables (theory driven)

Problem 2: Variable controversies

- Weighting
 - Motivated, i.e. informed by theory
 - Often missing in data-driven multivariate approaches to word meaning (semantic profiling; cf. Gries, Divjak, ...)
 - Danger: Unmotivated due to correlated descriptors
 - -> Implicit weighting
 - Possible solution: Factor analysis or principle component analysis

Problem 3: Variable controversies

- Standardization
 - yes or no? Well, it depends...
 - Standardization prevents undesired implicit weighting
 - ...but maybe we do not always want to counter such effect...

Procedure

Four steps in cluster analysis

Procedure: four steps

- STEP 1: Choose **measure of (dis)similarity** to generate a (dis)similarity matrix
 - Depends on information value & nature of the variables describing the objects to be clustered
- STEP 2: Choose **amalgamation rule** to determine how elements are merged
 - Depends on the structure one suspects the objects to exhibit
 - Characteristics of almagamation rules
- STEP 3: Interpreting the results
- STEP 4: validating the results

When should I use what similarity measure? (STEP 1)

- IF object are dissimilar when the exhibit widely different values
- THEN use distance measure
 - Euclidean distance
 - Manhattan distance
 - Maximum distance
- IF objects are dissimilar when the exhibit different slopes
- THEN use correlational measures
 - Pearson
 - Spearman
 - Cosine (of angle between vectors)

How to generate cluster structures (STEP 2)

- Single linkage
- Complete linkage
- Average linkage
- Ward's method

Single linkage (nearest neighbor)

Distance of two groups x,y is defined as *minimal* distance between any one element of x and any one element of y

Tends to generate elongated cluster chains, can identify outliers

Complete linkage (farthest neighbor)

Distance of two groups x,y is defined as the *maximal* distance between any one element of x and any one element of y

Good if data do consist of distinct clusters, produces compact clusters, problems with outliers

Average linkage

Distance of two groups x,y is defined as the *average* distance between any one element of x and any one element of y

Creates ball-shaped clusters with similar variances

Ward's method

- Minimize information loss associated with each grouping
- Information loss is defined in terms of error sum of squares crierion (ESS)
 - At eachstep, union of every possible cluster pair is considered
 - merge those two elements, whose merging least increases their sums of squared difference from the mean
- Creates small and even sized clusters
- Computationally intensive

Ward's method example

- 10 objects have scores (2, 6, 5, 6, 2, 2, 2, 2, 0, 0, 0) on some particular variable.
- The loss of information that would result from treating the ten scores as one group with a mean of 2.5 is represented by ESS given by,
- ESS One group = $(2 2.5)2 + (6 2.5)2 + \dots + (0 2.5)2 = 50.5$
- On the other hand, if the 10 objects are classified according to their scores into four sets,
- {0,0,0}, {2,2,2,2}, {5}, {6,6}
- The ESS can be evaluated as the sum of squares of four separate error sums of squares
 - ESS group1 + ESSgroup2 + ESSgroup3 + ESSgroup4 = 0.0
- Thus, clustering the 10 scores into 4 clusters results in no loss of information.

Application (examples)

Applications: Typology

• Altmann (1971) calculates difference for every pair of languages (using Euclidean distance)

Figure 1: Hierarchical classification of Slavic phonological profiles (Altmann 1971: 19)

Applications

- Cysouw (2006) questions the adequacy of rooted trees for typological classification
- Proposes unrooted phylogenetic trees (neighbor joining algorithm instead of Euclidean distance)

Unrooted phylogenetic trees (Cysouw 2006)

Figure 2: Unrooted tree of Slavic similarities, using the neighbour joining algorithm

Unrooted phylogenetic trees Wiechmann (in progress)

Do different parameters really make that much of a difference?

Wiechmann (to appear)

SCENARIO:

- □We are interested in association strength (collostruction strength)
- □this quantity is important for theory development
- □lots of measures of that quantity have been suggested in the computational and corpus linguistic literature

QUESTION:

☐ How do the measures' outputs relate to each other?

TASK:

□Assess degrees of similarity the output of 47 measures of association

An example: comparing 47 column vectors

am.MI3	am.MS	am.Po	oisson.Stirling
	0.749415659	0.410358961	-0.020680797
	1.493657045	2.130066207	-2.147689106
	-0.762153491	-0.729778419	0.493547173
	-2.106709137	-1.109824235	0.778951194
	-1.500297066	-1.014812772	0.83622818
	0.240854228	-0.207215443	0.524033039
	0.062586293	-0.349732637	0.591497289
	0.35455516	-0.140707426	0.599819276
	-0.544487573	-0.77728415	1.011055346
	0.147044034	0.115823482	-1.048740493
	0.817198929	0.467365852	0.050545439
	1.823982324	2.842652109	-1.972060588
	0.587632034	0.296345247	-0.22580183
	0.127573567	-0.302226906	0.575871329
	-1.391740027	-0.872295613	0.270828972
	-0.214864909	-0.577760099	0.833772541

z-standardized* association scores for 21 verbs towards nominal complementation pattern

(*better always scale to avoid that VAR with greatest range dominates results)

Parameter settings and cluster solutions

Cluster Dendrogram for Solution HClust.1

Observation Number in Data Set Dataset Method=ward; Distance=euclidian

Parameter settings and cluster solutions

Cluster Dendrogram for Solution HClust.2

Observation Number in Data Set Datas Summer 2008 - Daniel Wiechmann Method=ward; Distance=city-block

Parameter settings and cluster solutions

Cluster Dendrogram for Solution HClust.3

Observation Number in Data Set Dataset Summer 2008 - Daniel Wiechmann Method=average; Distance=euclidian

MORAL

- With each setting of a parameter, we **influence** the form of the cluster solution
- We effectively determine what structure we **impose** on the data
- This is why we need to think about these things before we calculate the solution and let our **theories** guide our choices

PART II:

Interpretation and validation

Interpreting the solution

Wiechmann (to appear) task: classify AM output

Where to cut the tree, so that the optimal number of groups is found?

Split evaluation

- Graph number of clusters implied by a tree against almagamation coefficient (e.g. Ward) & and look for flattening of curve
 - (cf. scree test for factor analysis)
- 'average silhouette width' (cf. Roossseuw 1987; Kaufman & Roosseeuw 1990: Chapter 2)

'average silhouette width'

• ASW coefficient assesses the *optimal ratio* of the intra-cluster dissimilarity of the objects within their clusters and the dissimilarity between elements of objects between clusters

Inter-clusters distance ⇒ maximized Intra-clusters distance ⇒ minimized

Silhouette width (SW)

- SW is a way to assess strength of clusters
 - SW of a point measures how well the individual was clustered
- $SW_i = (b_i a_i) / max(a_i, b_i)$
 - Where a_i is the average disstance from point i to all other points in i's cluster, and b_i is is the minimum average distance from point i to all points in another cluster
 - $-1 < SW_i < 1$

Average Silhouette Width (ASW)

- ASW measures the global goodness of clustering
 - ASW = $(\sum_{i} SW_i) / n$
 - 0 < ASW < 1
 - The larger ASW the better the split

Average Silhouette Width (ASW) Interpretation

I	0.71 - 1.00	A strong structure has been found (excellent split)	
II	0.51 - 0.70	A reasonable structure has been found	
III	0.26 - 0.50	The structure is weak and could be artificial	
IV	≤0.25	No substantial structure has been found (horrible split)	

Computing ASW

- for all partitioning solutions
 - beginning with the minimal one that consists of just two groups
 - ullet to the most detailed one, which consists of $N_{objects} 1$
 - here 48 1 = 47
- Compare ASW
 - Look for **highest values**
 - Look for local highs

Cluster solutions by average silhouette width

Cluster validation graph

7 cluster solution

Cluster Dendrogram

data.dist hclust (*, "complete")

Validation techniques

Validation techniques

- 1. Cophenetic correlation
- 2. Significance tests on vaiables used to create clusters
- 3. Significance test on independent variables
- 4. Monte Carlo
- 5. Replication

cf,. Aldenderfer & Blashfield 1984 for a discussion of these techniques

Monte carlo procedures

- Uses random number generators to generate data sets with general characteristics matching the overall characteristics of original data
- Same clustering methods are applied
- Results are compared

Replication

- Split up your data set into random subsamples and apply the same methodologies
- Checks internal consistency of a solution
 - If a cluster solution is repeatedly discovered across different sample from the same population, then it is plausible to conclude that this solution has some generality
- Replicability is necessary but not sufficient
 - Failure of replication -> bad solution
 - Successful replication -> chances are it is a good solution

Practical issues in clustering

Cluster analysis and scales of measurement

Dissimilarity and scales of measurement

- Interval (we have talked about this case already)
- Binary
- Nominal
- Ordinal
- Ratio -> **counts**
- Mix types

Interval-valued variables

- <u>similarity</u> is expressed as distance between objects
- Minkowski distance:

$$d(i,j) = \sqrt{(|x_{i1} - x_{j1}|^q + |x_{i2} - x_{j2}|^q + ... + |x_{ip} - x_{jp}|^q)}$$

where $i = (x_{i1}, x_{i2}, ..., x_{ip})$ and $j = (x_{j1}, x_{j2}, ..., x_{jp})$ are two *p*-dimensional data objects, and *q* is a positive integer

- If q = 1, d is Manhattan distance
- If q = 2, d is Euclidean distance

(Dis)similarity measures and scales of measurement

Binary data

- object_1 = c(1,1,1,0,0,1,0,1,1,0)
- object_2= c(0,1,0,0,0,1,0,1,1,1)
- object_3 = c(1,0,1,0,0,1,0,1,1,0)

•

(Dis)similarity measures and scales of measurement

Binary variable

Object_1: F is present
Object_1: F is absent

Object_2: F is present	Object_2: F is absent	
а	þ	a+b
С	d	c+d
a+c	b+d	m

(Dis)similarity measures and scales of measurement

• Similarity of two objects:

(parameters for w₁ and w₂ dependent on sim_coef choice)

$$a + (w_1 * d) / (a + (w_1 * d)) + (w_2 (b+c))$$

• IF presence or absence of variable level have same information value (= symmetric, i.e. $d(i, j) = \frac{b+c}{a+b+c+d}$, e.g. animacy),

THEN use simple matching $(\mathbf{w}_1 = 1; \mathbf{w}_2 = 1)$

• Otherwise, (asymmetric, $d(i, j) = \frac{b+c}{a+b+c}$, use either *Jaccard* or *Dice*

(Dis)similarity measures and scales of measurement

Nominal variables

- Well, they can be handled by generalizing over what we just said about binary variables
- Recode VAR as dummies and proceed as just described

(Dis)similarity measures and scales of measurement

Ordinal variables

- can be treated like interval-scaled variables
- Replace x by their rank
- Recode VAR as dummies and proceed as just described

(Dis)similarity measures and scales of measurement

Ratio-scaled

- averages
- lengths

counts

- object_1 = c(10,12,123,60,70,11,50,31,11,10)
- object_2 = c(1,15,130,62,75,21,40,24,11,18)
- ...

(Dis)similarity measures and scales of measurement

- For mixed variables...
 - symmetric binary, asymmetric binary, nominal, ordinal, interval and ratio
- ...we may use a weighted formula to combine their effects

$$d(i, j) = \frac{\sum_{f=1}^{p} \delta_{ij}^{(f)} d_{ij}^{(f)}}{\sum_{f=1}^{p} \delta_{ij}^{(f)}}$$

• f is **binary** or **nominal**:

$$d_{ij}^{(f)} \equiv 0$$
 if $x_{if} \equiv x_{jf}$, or $d_{ij}^{(f)} \equiv 1$

- \bullet f is **interval-based**: use the normalized distance
- f is **ordinal** or **ratio-scaled**
 - ullet compute ranks r_{if} and
 - and treat z_{if} as interval-scaled $z_{if} = \frac{r_{if}-1}{M_{if}-1}$

How to do all this...with SPSS

- Try this:
 - create a (fictive) data set in Excel
 - =RANDBETWEEN(1,100) # random number between 1 and 100
 - import this set to your favorite stat soft
 - In SPSS: Classify -> Hierarchical Cluster... ->
 - Choose variables
 - Tick:
 - o Cluster: cases
 - o Display: statistics & plots
 - o Statistics -> (Agglomeration schedule) & proximity matrix
 - o Plots -> Dendrogram
 - o Method -> some cluster method & counts -> Chi squared
 - You should get something like this <u>SPSS_demo_out</u>

How to do all this...with R

- R is of course way more powerful
 - more algorithms
 - new techniques get implemented as they are developed
 - R graphics are much more versatile and look way cooler;)
- this is what you get if you search for >>cluster<<

Fuzzy search