Workshop on "Pattern Finding" Tilburg University May 11, 2010

On how to measure degrees of entrenchment of schematic constructions

► Entrenchment

AUTOMATIZATION is the process observed in learning to tie a shoe or recite the alphabet: through repetition or rehearsal, a complex structure is thoroughly mastered to the point that using it is virtually automatic and requires little conscious monitoring. In CG parlance, a structure undergoes progressive **ENTRENCHMENT** and eventually becomes established as a unit"

(Langacker 2008:16)

► Entrenchment and online processing

Hypothesis:

► Processing demand of a given construction C is a function of C's degree of entrenchment

Task:

► Measure degrees of *entrenchment of constructions*

1. Query corpus for target patterns

 $n \sim 1000$

ICE-GB:S1A-001 #030:1:B ICE-GB:S1A-001 #032:1:B ICE-GB:S1A-001 #038:1:B ICE-GB:S1A-001 #039:1:B This this is a dance group which doesnot exclude people I enjoyed the time that I was given to to study and [...] and the the opportunity that has arisen through the [...] Uhm the movement language that 's beingdeveloped is [...]

2. Describe data points

<u>add</u>	text.type	embedding	head	definiteness.head	concreteness.head
ICE.GB:S1A.014#129:1:C	DIRECT.CONV	CENTER	ALL	INDEFINITE.HEAD	ABSTRACT.HEAD
ICE.GB:S1A.020#290:1:C	DIRECT.CONV	CENTER	ALL	INDEFINITE.HEAD	ABSTRACT.HEAD
ICE.GB:S1A.037#139:1:B	DIRECT.CONV	CENTER	ALL	INDEFINITE.HEAD	ABSTRACT.HEAD
ICE.GB:S1A.015#237:1:A	DIRECT.CONV	CENTER	ALL	INDEFINITE.HEAD	CONCRETE.HEAD

Address: $\{FEATURE_1, FEATURE_2, FEATURE_3, ..., FEATURE_K\}$

3. Search for patterns in these descriptions

Address: $\{FEATURE_1, FEATURE_2, FEATURE_3, ..., FEATURE_K\}$

 $n \sim 1000$

Task 1: Detecting entrenched patterns

- Methods
 - association rule mining ...
 - hierarchical configural frequency analysis
 - •

Task 2: Structure detected patterns based on similarity (constructional network)

- Methods
 - hierarchical agglomerative clustering

Processing predictions can now be derived from network position and degrees of entrenchment

Search for patterns in these data

Address: $\{FEATURE_1, FEATURE_2, FEATURE_3, ..., FEATURE_K\}$

 $n \sim 1000$

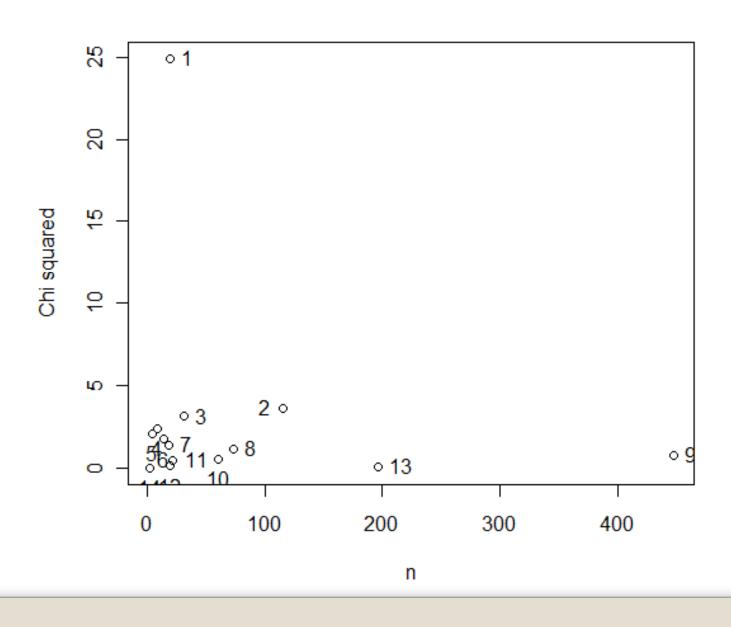
Hierarchical configural frequency analysis e.g. hcfa(cfa)

- evaluates complex contingency tables (usual caveats apply)
- •searches for *types*, i.e. factor level combinations that occur with above chance frequencies

Configural Frequency Analysis

```
*** Analysis of configuration frequencies (CFA) ***
    label
                expected
                                           chisq
                                                     p.chisq sig.chisq
  B C E G 237 194.551042 0.0444282844 9.26190894 0.002339690
                                                                  TRUE 3.3388386 0.0004206471
  A C E G 399 455.837616 0.0818794235 7.08698550 0.007764574
                                                                 FALSE -3.4264875 0.9996942791
              21.054705 0.0105809337 6.77711144 0.009233420
                                                                 FALSE 2.6274520 0.0043013494 FALSE
               81.663400 0.0193416573 5.22848806 0.022219839
                                                                 FALSE -2.3723728 0.9911628750 FALSE
              55.589953 0.0131669541 3.73537732 0.053271634
                                                                 FALSE 1.9811900 0.0237849861 FALSE
  A C F G 216 191.339246 0.0257241717 3.17840063 0.074617734
                                                                 FALSE 1.9526336 0.0254315116 FALSE
  A D E G 62 50.159738 0.0107654382 2.79490721 0.094564240
                                                                 FALSE 1.7094949 0.0436796575 FALSE
               6.117041 0.0035991804 2.77095209 0.095989051
                                                                 FALSE -1.6690626 0.9524475160 FALSE
               9.958951 0.0034726392 1.57378972 0.209657507
                                                                 FALSE -1.2599753 0.8961608615 FALSE
10 B D E G 17 21.408126 0.0039058639 0.90767294 0.340732610
                                                                 FALSE -0.9617123 0.8319029208 FALSE
11 B C E H 23 23.725737 0.0006443695 0.02219927 0.881558224
                                                                 FALSE -0.1505553 0.5598367513 FALSE
12 A C F H 24 23.334054 0.0005910763 0.01900585 0.890349717
                                                                 FALSE 0.1392820 0.4446136583 FALSE
Summary statistics:
Total Chi squared
                         = 43.3568
Total degrees of freedom =
                         = 4.561485e-11
Sum of counts
                         = 1150
```

Configural Frequency Analysis



Example:

English Relative Clause Constructions

2 clausal constituents (1 MC, 1 RC)

Attribute Value

medium	spoken	written
head type	lexical	pronominal
unique A	present	absent
content head	high	low
animacy head	animate	inanimate
definiteness head	definite	indefinite
SRC type	lexical	pronominal
relativizer	present	absent
embedding	right	center

e.g. ICE-GB:S1A-001 #039:1:B *The only thing* [you could do] is [...]

 \rightarrow CFA detects a total of 7 types(Freq_{obs} >_{sig} Freq_{exp}) in the data (n = 1000)

Pattern

medium	spoken	
head type	lexical	
unique A	present	
content head	low	
animacy head	inanimate	
definiteness head	definite	
SRC type	pronominal	
relativizer	absent	
embedding	center	

Stats for Pattern

Name	c.s3
Observed Freq	15
Expected Freq	1.1079
Contribution to Chisq	174.1948
Obs-exp	>
P.adj.bin	4.89E-10
Dec	***
Q	0.042

Deriving processing predictions from a similarity-based constructional network

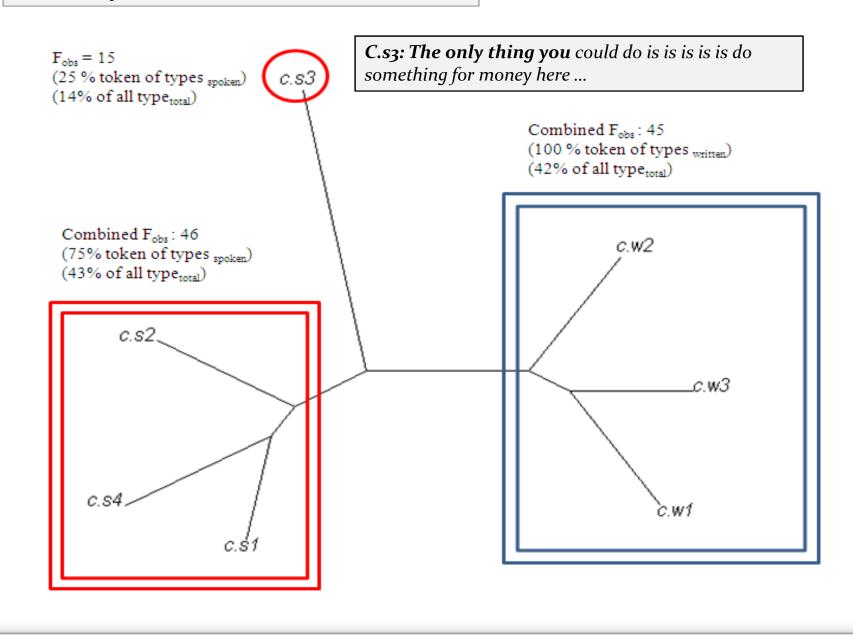
Task 2: Build Constructional Network

→ Relate all detected types based on similarity

Method: hierarchical agglomerative clustering

- •similarity: Euclidean distance in *n*-dimensional space
- •amalgamation: nearest neighbor (single linkage)
- •output as unrooted tree (e.g. nj (ape))

Similarity-based constructional network



Similarity-based constructional network **C.s3:** The only thing you could do is is is is do $F_{obs} = 15$ something for money here ... (25 % token of types spoken) (14% of all typetotal) Combined Fobs: 45 (100 % token of types written) (42% of all typetotal) Processing predictions can now be derived from network position and degrees of entrenchment c.s2. c.w3

(Hierarchical) Configural Frequency Analysis

Attribute Value

medium	spoken	
head type	lexical	
unique A	present	
content head	unspecified	
animacy head	inanimate	
definiteness head	unspecified	
SRC type	pronominal	
relativizer	absent	
embedding	center	

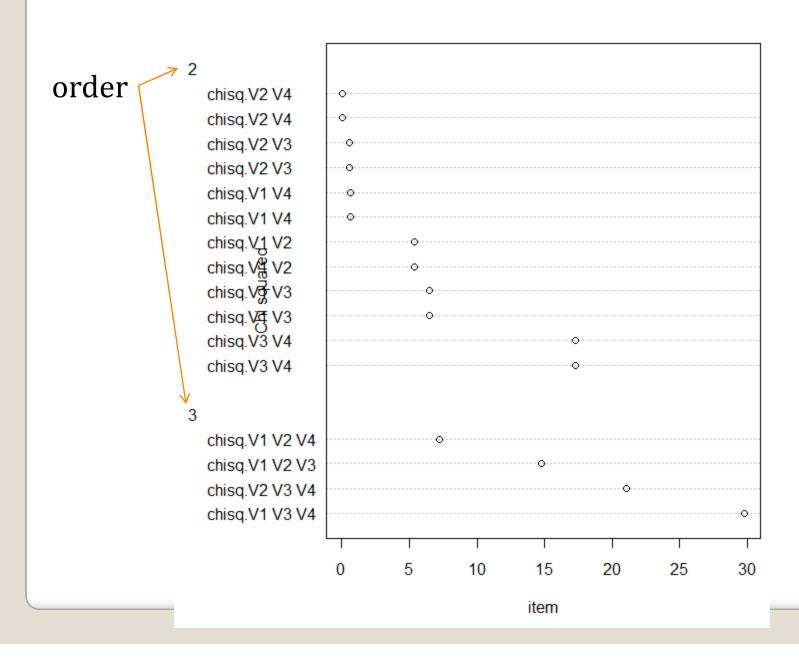
We can look for higher level configurations (~ more schematic constructions) as well...

Hierarchical Configural Frequency Analysis

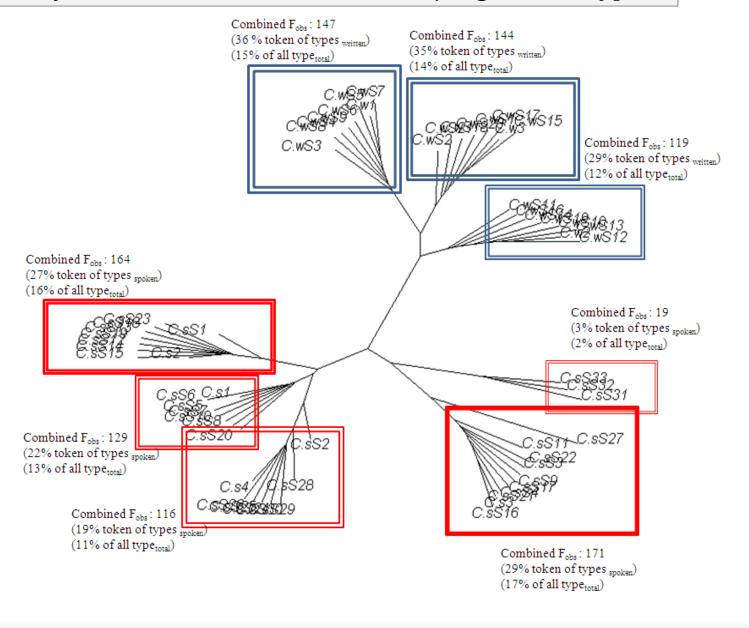
*** Hierarchical CFA ***

```
Overall chi squared df p order
           45.4701741 4 3.174446e-09
V1 V3 V4
V1 V2 V3 28.0039946 4 1.244970e-05
           25.7175291 4 3.607730e-05
V2 V3 V4
V2 V3
             18.2073010 1 1.981179e-05
             18.2073010 1 1.981179e-05
V2 V3
            13.6988207 4 8.321007e-03
V1 V2 V4
V1 V2
              6.8254186 1 8.986949e-03
V1 V2
              6.8254186 1 8.986949e-03
              4.3866035 1 3.622241e-02
V3 V4
V3 V4
          4.3866035 1 3.622241e-02
V1 V4
       2.5484019 1 1.104059e-01
V1 V4
       2.5484019 1 1.104059e-01
V2 V4
       2.3643996 1 1.241317e-01
V2 V4
               2.3643996 1 1.241317e-01
V1 V3
               0.8500972 1 3.565249e-01
V1 V3
               0.8500972 1 3.565249e-01
```

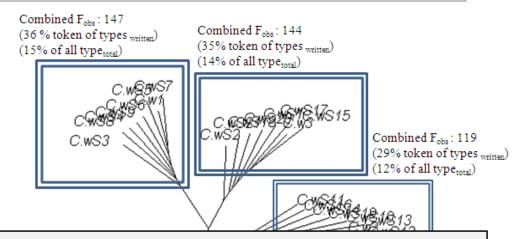
Hierarchical Configural Frequency Analysis



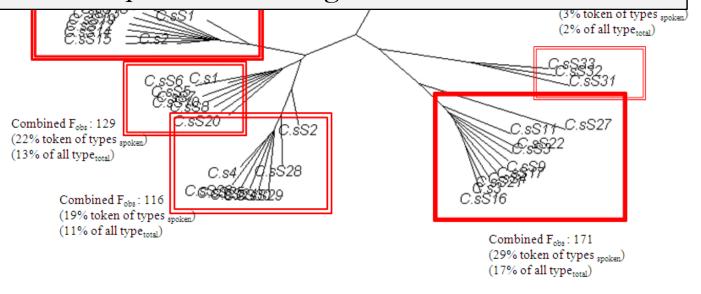
Similarity-based constructional network w/ higher level types



Similarity-based constructional network w/ higher level types



Processing predictions can now be derived from network position and degrees of entrenchment



Thank you for your attention!

Presentation available from www.daniel-wiechmann.net

