Third International Conference of the German Cognitive Linguistics Association Leipzig, Germany, September 25 - 27, 2008 Theme Session: Empirical Approaches to Constructional Meaning



# Some thoughts on how to measure association strength



Daniel Wiechmann Friedrich Schiller University, Jena



### **ASSOCIATION** in language



#### Some types of associative links between linguistic elements

✓ form – meaning
✓ form – form
✓ form – function
✓ meaning – meaning
✓ sign – sign

(i.e. signs, Constructions in CxGs)(collocations)(colligations)(semantic fields/networks)(collostructions)

# Association strength is the glue between units



## **ASSOCIATION** in language processing: Local syntactic ambiguity

Information about **associative relationships speeds-up comprehension** (e.g. Hare et al. 2003, 2004; Wiechmann 2008; Zeschel 2008)

association between a given
 verb & complementation type [nominal/sentential]

Nominal complement

The athlete **revealed** his problem....

Sentential complement

... worried his parents

... with drugs





### How to measure association strength?

#### Situation:

Many candidate measures suggested in the corpus linguistic and computational linguistic literature (Evert 2004 lists as many as **47 measures**).

#### Question:

Which one should we use?
Is (brute force) *co-activation frequency* too crude?
Is *predictiveness* of a stimulus more important?
And if so, how exactly should we measure?

#### Answer:



Let's put them to the test



### Steps involved in the analysis





For all candidate measures (n=47), Compute **association strengths verb – nominal complements** 



21 polysemous verbs Corpus:  $BNC_{spoken}$ N = 6417

accept, announce, assume, believe, claim, deny, discover, establish, expect, feel, hear, mention, notice, promise, realize, remember, report, say, suggest, understand, write

NP complements

S complements

|             | nominal complements | sentential complements |       |
|-------------|---------------------|------------------------|-------|
| verb v      | O <sub>11</sub>     | O <sub>12</sub>        | $R_1$ |
| other verbs | O <sub>21</sub>     | O <sub>22</sub>        | $R_2$ |
|             | C <sub>1</sub>      | C <sub>2</sub>         | Ν     |



# Step 1: Assessing association strength VERB – NP COMP



### Step 1: Assessing association strength VERB – NP COMP

Fisher exact test - (disc) odds ratios - minimum sensitivity







**Regression analysis (example)** Degree of fit (co-)determines adequacy of measure

shDO





### Minimum Sensitivity (MS)

(Pedersen & Bruce 1996; Pedersen 1998)

MS uses two conditional probabilities: **P(verb|construction)** and **P(construction|verb)** 





Minimum Sensitivity should be the measure of choice, because it is...

*1.free from underlying distributional assumptions* that are not met by natural language data.

*2.computationally less demanding* than exact statistical hypothesis tests (e.g. Fisher-Yates test)

*3.less dependent on sample sizes* than (exact or asymptotic) statistical hypothesis tests

## 4.empirically most adequate

not only in the present study but it in Krenn (2000).







# Thank you for your attention.

And special thanks to...

**Shelia Kennison** (U Oklahoma) for sharing her fixation time data,

**Steffi Wulff** (U Michigan) for her ICE-isomorphic BNC-sample

**Stefan Gries** (UCSB) for his Cluster Eval 0.9

**Stefan Evert** (U Osnabrück) for his UCS 0.5



...and their helpful comments.









# R

#### **References**:

**Evert**, Stefan. 2004. The Statistics of Word Co-occurrences: Word Pairs and Collocations. Unpublished doctoral dissertation, Institut für maschinelle Sprachverarbeitung, Universität Stuttgart.

Hare, Mary L., Ken McRae and Jeffrey L. Elman

2003 Sense and structure: Meaning as a determinant of verb subcategorization preferences. *Journal of Memory and Language 48, 281–303.* 

2004 Admitting that admitting verb sense into corpus analyses makes sense. *Language and Cognitive Processes 19, 181–224.* 

**Kennison**, Shelia. 2001. Limitations on the use of verb information during sentence comprehension. *Psychonomic Bullettin and Review 8, 132–138.* 

**Krenn**, Brigitte.2000.The Usual Suspects: Data-oriented models for the identification and representation of lexical collocation., volume 7 of Saarbruecken. Dissertations in Computational Linguistics and Language Technology. DFKI and Universität des Saarlandes, Saarbrücken, Germany.

#### Pedersen, Ted

1998 Dependent Bigram Identification. *Proceedings of the Fifteenth National Conference on Artificial Intelligence, July 1998, MadisonWI.* 

#### Pedersen, Ted and Robert Bruce

1996 What to infer from a description.TechnicalReport96-CSE-04,SouthernMethodist University, Dallas, TX.

#### Wiechmann, Daniel

2008. Sense-contingent lexical preferences and early parsing decisions: Corpus-evidence from local NP/S-ambiguities. *Cognitive Linguistics* 19, 439–455.

#### Zeschel, Arne

2008. Lexical chunking effects in sentence processing. Cognitive Linguistics 19.